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Abstract. Via Monte Carlo studies of the frustratedXY or classical planar model we
demonstrate the possibility of a finite (nonzero) temperature spin/gauge glass-like phase in two
dimensions. Examples of both periodic and quasiperiodic two-dimensional lattices, where a
high-temperature paramagnetic phase appears to change to a spin/gauge glass-like phase with
the lowering of temperature, are presented. The possibility of the glassy phase is supported
by our study of the temperature dependence of the Edwards–Anderson order parameter, spin
glass susceptibility, linear susceptibility and the specific heat. Using finite-size scaling analysis
of spin glass susceptibility and the temperature dependence of the order parameter we provide
estimates of critical temperatures and exponentsη, ν andβ for the various lattices. On the basis
of these results we expect that certain quasiperiodic as well as periodic two-dimensional arrays
of superconducting grains in suitably chosen magnetic fields should behave as superconducting
glasses at low temperatures.

1. Introduction

In a recent communication [1] we reported that the frustratedXY model (see equation (1)) on
a two-dimensional (2D) Penrose lattice [2] may exhibit a low-temperature spin/gauge glass
phase [3, 4]. In this work, we show that quasiperiodicity is not a necessary requirement for
the spin glass-like phase in this model. This conclusion is based on our Monte Carlo (MC)
study of the above model on the periodic honeycomb and bathroom tile lattices. When fully
frustrated, these lattices appear to undergo a transition which can be interpreted as being of
paramagnetic to spin glass type. We present numerical evidence, based on our Monte Carlo
(MC) simulation, that the transition temperatureTf is above zero, albeit small. In addition,
we find that the octagonal quasiperiodic lattice [5] exhibits a behaviour similar to that of
the other three lattices, but with a somewhat higherTf .

These results are unexpected in the light of the prevalent notion that the critical
dimension for a spin/vortex (gauge) glass phase is greater than two [6–10]. However,
a few comments and words of caution are in order at this point. As explained towards the
end of the next section, our model is neither a spin glass nor a vortex or gauge glass model
in the conventional sense of these terms. The element of randomness, which is essential in
these models, is missing from our model. The interaction between the spins in our model is
nonrandom, being determined solely by the lattice structure and an applied magnetic field.
All numerical simulations [6–9] that suggest that the critical dimension for the spin glass
phase is greater than two have been performed for models with random interactions between
the spins. The results of these simulations thus do not apply to the present study. Schwartz
and Young [10] have provided an analytical treatment showing that in dimensions62 the
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XY spin glass order parameter should go to zero. But their proof crucially depends on
configurational averaging over the (random) interactions between the spins. Such averaging
is not permitted in the present case. The configurational averaging essentially makes the
results independent of the lattice type, whereas the results for the frustratedXY model are
known to be very much lattice dependent. Thus the work of Schwartz and Young [10] does
not shed any light on the behaviour of the order parameter for the frustratedXY model
used in this work.

In spite of the differences between our model and the conventional spin/gauge glass
models the critical behaviour that we observe in our simulation is identical to that of a
canonical spin glass. We have therefore decided to label the observed phase transition a spin
glass transition. The frustration in the interaction between the spins, responsible for the low-
temperature spin/gauge glass-like phase in this model, varies between sites in a nonrandom
way determined by the lattice structure and an external field. Thus our results provide
examples where frustration alone (i.e. without disorder) is capable of inducing a spin/gauge
glass-like phase. Recently Lemke and Campbell [11] have studied the Ising model with
nearest-neighbour random±λJ and next-nearest-neighbour ferromagnetic interactions on
square lattices. These authors also find evidence of a spin glass transition. It is possible
that the nonrandomness of the next-nearest-neighbour interaction in their model is the key
ingredient for the spin glass transition that they observe.

Our results clearly illustrate the role of lattice structure as a relevant variable from the
viewpoint of the universality class of the transition. The frustratedXY model has been
studied widely on a variety of periodic 2D lattices using mean-field and renormalization
group methods, and Monte Carlo simulation [12–25]. The results, although sometimes
ambiguous and often discrepant among various authors, are certainly lattice dependent.
Two most commonly reported and discussed transitions for the fully frustratedXY model
are the Ising type and the Kosterlitz–Thouless (KT) type [26, 27]. We provide numerical
evidence that rules out the possibility of either of these two types of transition on the two
periodic and the two quasiperiodic lattices considered in this work.

The purpose of this work is twofold: to provide numerical evidence that both periodic
and quasiperiodic lattices should be capable of exhibiting a spin/gauge glass-like transition
in 2D, and to provide some details of the study on the Penrose lattice, which were left
out of our previous communication [1]. With the example of the periodic honeycomb and
bathroom tile lattices we have made an attempt to dispel any misconception that we may
have inadvertently generated in reference [1] that quasiperiodicity is a necessary condition
for the glass-like phase in the model. Both the periodic and the quasiperiodic lattices studied
in this work seem to undergo a transition which shows all the symptoms of a spin glass
transition, with transition temperatures being low, but certainly above zero.

We have studied the current model without the frustration term (theAij -term in equation
(1)), i.e. the standardXY model, on the quasiperiodic 2D Penrose lattice. We find that
the transition is of the KT type [26] with the exponents identical to those obtained by
Tobochnik and Chester [28] in their study on the square lattice, but the transition temperature
is somewhat higher. Thus in the absence of frustration (or variation in the sign of the
interactions), quasiperiodicity is an irrelevant variable, as expected. The details of the
standardXY model study on 2D and 3D Penrose lattices will be published elsewhere.

The remainder of this paper is divided into sections as follows. In section 2 we discuss
our model and some features of the lattices considered in this work. In section 3 we present
the results of the MC simulations. In section 4 we compare our results with those obtained
using other lattices. We also suggest what characteristic of our model might be responsible
for the spin glass phase. In section 5 we present our comments and conclusions.
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Figure 1. Lattices used in the present study, along with their reference frames.

2. The model

We consider the Hamiltonian for theXY model describing the interaction between 2D spin
vectors with orientationsθi and θj situated at lattice sitesi and j via a nearest-neighbour
coupling parameterJ :

H = −J
∑
[ij ]

cos(θi − θj + Aij ) (1)

where the summation is restricted to nearest-neighbour pairs [ij ]. The parameterAij controls
the frustration in the model. In the context of an array of superconducting grains,θi is the
phase of the superconducting order parameter at the graini and the above Hamiltonian can
be seen as describing the resulting Josephson junction of the grains ‘minimally coupled’ to
a transverse magnetic field with vector potentialA with

Aij = 2π

80

∫ rj

ri

A · dl. (2)

80 is the elementary flux quantumhc/(2e) associated with the Cooper pairs, andri denotes
the lattice sites. Here the magnetic field acts as the source of frustration: anAij which is
an odd multiple ofπ essentially renders the bond [ij ] negative.

The directed sum ofAij about a plaquette in a 2D lattice can be written as 2πf , where
f is the flux through the plaquette in units of80. The 2D Penrose lattice [2] is composed
of two (fat and thin) rhombic unit cells (plaquettes). The ratio of the areas of the fat and
the thin rhombuses in the Penrose lattice is the Golden Mean (τ ), which is an irrational
number ((1+√5)/2). Thus only one set of plaquettes can be fully frustrated at a time with
a suitable choice of the magnetic field givingf = 1/2. The fluxf through the individual
plaquettes in the other set will then be an irrational number. The octagonal lattice [5]
consists of two unit cells, one square and the other a thin rhombus, with a ratio of

√
2
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of their areas. Similarly to the Penrose lattice case, fully frustrating one of the plaquettes
results in an irrational flux through the other.

Table 1. The average energy per spin (site)〈u〉 at the lowest temperature, 0.02J , used in the
simulation for various lattices and cluster sizes,N . Lx andLy denote the linear dimensions of
the clusters in thex- andy-directions, respectively.

Lattice N Lx Ly 〈u〉
Penrose 644 24.80 21.09−1.4938

1686 40.12 34.13−1.4893
4414 64.92 55.23−1.4889

11 556 105.05 89.36−1.4884

Octagonal 239 14.07 14.07−1.3878
1393 33.97 33.97−1.3926
8119 82.01 82.01−1.3947

Honeycomb 242 19.05 19.05−1.2169
1682 50.23 50.23−1.1980
4050 77.94 77.94−1.1926
8192 110.85 110.85−1.1868

Bathroom tile 256 19.31 19.31−1.1842
1600 48.28 48.28−1.1846
4096 77.25 77.25−1.1843
8100 108.64 108.64−1.1847

Figure 1 displays the lattices used in this work along with the referencex- and y-
directions. The linear dimensions of the clusters used in the simulation along thex- and
y-directions,Lx andLy , and the corresponding numbers of sites in the clusters are given
in table 1.

In figures 1(a) and 1(b) we show sections of Penrose (decagonal) and octagonal
quasilattices. Self-similarity, or, equivalently, the inflation–deflation property of these two
quasilattices, is characterized by two irrational numbers, the Golden Mean(τ = (1+√5)/2)
and the Silver Mean(σ = 1 + √2), respectively, which also dictate their decagonal
and octagonal bond orientational symmetry. The two quasilattices can be generated via
projections of 5D and 4D simple hypercubic (periodic) lattices onto the physical 2D plane.
They have similar ring structure, both containing only even-order rings. The average number
of nearest neighbours for both quasilattices is four, as in a square lattice. But unlike
the square lattice, the two quasilattices are characterized by variations in near-neighbour
environments. For the Penrose (decagonal) lattice the number of nearest neighbours varies
between three and seven, whereas for the octagonal lattice the number varies between three
and eight. In order to reduce the surface effects in our finite-cluster MC calculations we
have used periodic boundary conditions. Rational approximants of the two quasilattices,
which can be repeated periodically, can be obtained from the rational approximations of
the irrational numbers, the Golden and the Silver Means. We follow a systematic way to
generate these periodic approximants as given by Lanc¸on and Billard [29].

Figures 1(c) and 1(d) display sections of the two periodic lattices, honeycomb and
bathroom tile, considered in the present work. Note that both are non-Bravais lattices with
the same number of nearest neighbours. The smallest unit cells that provide a Bravais lattice
description of these lattices involve two sites for the honeycomb lattice and four for the
bathroom tile. The honeycomb lattice consists of only one type of plaquette (hexagonal),
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while the bathroom tile lattice has two types, square and octagonal, with an irrational ratio
of 4(1 + √2) of the areas of the two plaquettes (octagonal to square). Both structures
contain only even-order rings.

Finally, a word about the nomenclature used to describe the model given by equation
(1). If theAij are restricted to the values 0 andπ and randomly assume these values with
equal probability, then the model becomes the Edwards–Anderson±J XY spin glass, with
random ferromagnetic (Aij = 0) or antiferromagnetic (Aij = π ) coupling between adjacent
spins. If theAij are independent random variables, assuming all values between 0 and 2π ,
the model is referred to as the gauge or vortex glass model [30] and is believed to belong
to a different universality class, presumably because it lacks the ‘reflection’ symmetry,
θi → −θi ∀i. In the present case theAij are lattice structure dependent. They assume
many different values in the interval between 0 and 2π , determined strictly by the lattice
structure and the applied transverse field. In this sense our model is different from both the
spin glass and gauge glass models. However, we will use the term spin glass throughout the
remainder of this paper, especially in describing the phase transition itself. The quantities
that we study show temperature variations similar to those observed experimentally for the
so-called spin glasses, hence the choice.

3. Results of MC simulation

For the lattices which contain two different plaquettes, we present results for the case where
the plaquettes with the smaller area are fully frustrated. For the Penrose lattice these are
the thin rhombohedral plaquettes. For the octagonal and the bathroom tile lattices these
are, respectively, the rhombohedral and the square plaquettes. Results for the other case,
where the plaquettes with the larger area are fully frustrated, are qualitatively similar. All
of our results are obtained via MC simulation based on the Metropolis algorithm [31], using
periodic boundary conditions. We have cooled our systems in a quasistatic manner, starting
from a high-temperature(T (in units of J ) > 2.0) random configuration and then heated
the system in the same quasistatic fashion. Since we performed the simulation inn blocks,
the heating and cooling data are obtained by averaging over these blocks, with the error
bars representing the standard deviation, obtained by dividing the square root of the sum
of squares of the deviations from the mean by

√
n− 1, instead of

√
n. We then perform a

‘grand average’ over the heating and cooling data.
By associating a spinSi = (cosθi, sinθi) with every lattice sitei, we can define the

quantity

1

N

N∑
i

〈Si〉 (3)

where〈 〉 denotes a canonical ensemble average at a temperatureT , as the magnetic moment
per site at temperatureT . Note that this quantity does not represent the actual magnetic
moment of a cluster of superconducting grains in a transverse magnetic field. However,
defined as above, the magnetic moment per lattice site calculated for all of the lattices
studied is found to be small (<0.02) over the entire temperature range. The magnitude of
the moment decreases steadily with the size of the cluster, suggesting that the magnetization
is strictly zero in the thermodynamic limit. For the largest lattice studied (N = 11 556)
the magnetic moment per lattice site is<0.006, i.e. zero for all practical purposes. For all
lattices and lattice sizes the magnetic moment shows no discernible temperature dependence,
staying practically zero at all temperatures. This is an indication that the ground state (more
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appropriately, the lowest-temperature (0.02J ) state studied via our MC simulation) retains
the continuous O(2) symmetry of the Hamiltonian, and there is no spontaneous breakdown
into the discrete Z(2) symmetry, as would be the case for an Ising transition. However, the
vanishing of the magnetic moment at all temperatures does not rule out the possibility of a
KT transition. Below we present further analysis in an attempt to determine the existence
and nature of the transition(s) for the various lattices.

0.0 0.1 0.2 0.3 0.4 0.5
kBT / J

0.0

0.2

0.4

0.6

0.8

1.0

q E
A

Penrose        (N = 4 414,  Tf = 0.137 J)
Octagonal     (N = 8 119, Tf = 0.33 J)
Honeycomb  (N = 8 192,  Tf = 0.11 J) 
Bathroom      (N = 8 100,  Tf = 0.11 J)

Figure 2. The Edwards–Anderson order parameter as a function of temperature.N denotes the
number of lattice sites andTf is the estimate of the transition temperature for the corresponding
lattice, obtained from the analysis of the spin glass susceptibility.

3.1. The Edwards–Anderson order parameter

Since the spins appear to be disordered at all temperatures, it is appropriate to explore the
possibility of spin freezing over macroscopic timescales. To study the freezing of the spins
at the lattice sites we calculate the Edwards–Anderson [32] order parameter. In figure 2 we
show this order parameter, defined by

qEA = (1/N)
N∑
i

〈Si〉2. (4)

In a completely frozen systemqEA is unity, while for a completely ergodic system it is
zero. This order parameter shows a monotonic decrease with increasing temperature, clearly
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vanishing at temperatures beyond 0.5 for all lattices. The results shown in figure 2 were
obtained by averaging over 5 blocks of 60 000 configurations, generated after equilibrium
was achieved. In all cases the order parameter is seen to vanish not abruptly, but
continuously with a long tail. This is a consequence of the finite system size. It is
expected that the tail region will decrease with increasing system size and eventually
disappear in the thermodynamic limit. We find that the tail persists, even for our largest
systems (e.g.∼11 000-site cluster for the Penrose lattice) and, consequently, the transition
temperature, at whichqEA goes to zero, cannot be appropriately determined from figure 2.
Thus, we use other quantities to analyse the transition and provide estimates of the transition
temperaturesTf for the four lattices. In figure 2, we have indicated, in addition to the lattice
sizes, our estimates of the transition temperatures for the corresponding lattice, obtained from
a finite-size scaling analysis of spin glass susceptibility (to be described later).

Although we cannot accurately determine aTf from this method, it is clear that all of the
systems studied have a low-temperature spin/gauge phase with a nonzero order parameter
qEA, changing into a phase with zeroqEA as the temperature is raised.

3.2. Linear susceptibility

Linear susceptibilities per spin for the honeycomb lattice, calculated from the fluctuations
in the magnetization (net magnetic moment|m| for a lattice ofN sites),

χ = 〈m
2〉 − 〈|m|〉2
NkBT

(5)

are shown in figure 3. At low temperatures (0.02–0.2)J , the results are obtained by averaging
over 5 blocks of 125 000 MC steps, while 5 blocks of 15 000–45 000 steps were used for
higher temperatures. The large hysteresis in the low-temperature region indicates a high
number of metastable states, which is a characteristic of spin glasses. These metastable
states give rise to large error bars in〈m2〉 − 〈|m|〉2 at low temperatures, which are further
accentuated by a division byT in equation (4). Although we feel that it might be possible
to reduce the size of these error bars, this would require very long runs and one must
also ensure that the system does not become trapped in one of these metastable states.
Nevertheless, despite the large error bars, a cusp-like feature inχ is clearly visible around
Tf ∼ 0.15. We also find a saturation in this cusp with respect to system size, which is
consistent with spin glass behaviour. The behaviour of the susceptibility for the honeycomb
lattice shown in figure 3 is very similar to that for the Penrose lattice, discussed in our
earlier publication [1].

In the inset of figure 3 we have shown the quantityT χ , which approaches a constant at
high-temperatures. Thus the high-temperature phase is strictly paramagnetic withχ obeying
the Curie law. The general temperature dependence ofT χ for all other lattices studied,
Penrose, octagonal and bathroom tile, is similar to that shown in figure 3. The Penrose
lattice result is given in reference [1]. Note that since the magnetic moment〈m〉 ∼ 0 for
all the lattices, the quantity plotted in the inset of figure 3 is proportional to〈m2〉. For
a KT transition this quantity diverges below the transition temperature. For an Ising-type
(paramagnetic-to-ferromagnetic) transition it remains finite as the temperature approaches
zero, and also is dependent on the system size. Thus the fact that〈m2〉 approaches zero for
all of the lattices studied is an indication that they do not exhibit either KT or Ising-type
transition as the temperature is lowered from the high-temperature paramagnetic phase. The
saturation of the susceptibility with the system size, the appearance of a cusp-like feature
and the vanishing of the function〈m2〉 as the temperature approaches zero are all consistent
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Figure 3. The linear susceptibility as a function of temperature for the honeycomb lattice. The
inset shows the productT χ , clearly indicating that the high-temperature phase is paramagnetic,
with a Curie-like behaviour forχ .

with the scenario of a low-temperature spin glass phase. As mentioned earlier, the variation
of 〈m2〉 or T χ with temperature for the other lattices is similar to that shown in the inset
of figure 3, although some irregular features seem to appear in the functionχ itself for the
octagonal and the bathroom tile lattices, as the division byT , especially at low temperatures,
strongly magnifies minor deviations in〈m2〉 from their exact values. For all four lattices
studied〈m2〉 rises, more or less smoothly, from zero and saturates at a constant value as
the temperature is increased. Note that the bump in the inset of figure 3 is probably due
to a convergence problem, as indicated by the large error bars. The results for the Penrose
lattice do not show such a bump (see the inset of figure 2 in reference [1]).

It should also be noted that we have repeated the susceptibility calculation for the
Penrose lattice without the frustration termAij in equation (1). We obtain a divergence
in susceptibility as the temperature is lowered, consistent with a KT transition. By fitting
the susceptibility to the form proposed by Kosterlitz [27] we have obtained a KT transition
temperatureTKT of 1.027± 0.002J for this lattice and an exponent in agreement with that
obtained by Tobochnik and Chester [28] for the square lattice. The value of 1.027 forTKT
obtained by us for the Penrose lattice is slightly higher than the value (0.89–0.95)J reported
in the literature for the square lattice (see Tobochnik and Chester [28] and references therein).
Details of the unfrustrated Penrose lattice calculation will be published elsewhere.
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Figure 4. The specific heat as a function of temperature for the octagonal, honeycomb and
bathroom tile lattices.

3.3. Specific heat

The temperature variation of the specific heat for both frustrated and unfrustrated Penrose
lattices has been discussed in our earlier publication [1]. The specific heat per site for the
two periodic lattices and the octagonal lattice obtained from the fluctuations in the energy
U of the system:

C = 〈U
2〉 − 〈U〉2
NkBT 2

(6)

are shown in figure 4. The results for various system sizes, clearly indicating a saturation
with respect to system size, are shown. These results are averages between heating and
cooling, with the low-temperature results having a somewhat larger hysteresis. All of
the averages were obtained after equilibrating; however, the high-temperature values were
obtained by averaging over 5 blocks of 15 000 steps, whereas 5 blocks of 45 000 steps were
used for the low temperatures. The saturation in the peak height of the specific heat is a
consequence of the fact that it appears at a temperature at which the spin glass correlation
is finite, i.e. above the spin/gauge glass transition temperature. Note that for all lattices
the zero-temperature specific heat approaches a value of 0.5kB . This is consistent with the
equipartition theorem valid for the Hamiltonian (1) with the cosine function being truncated
at the quadratic term.

A few comments regarding our results on the honeycomb lattice are in order at this
stage. Shih and Stroud [13] carried out a Monte Carlo study of the fully frustratedXY
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Figure 5. A scaling plot of the spin glass susceptibility for the Penrose lattice obtained using
the exponentsη = 0.2, ν = 2.6, andTf = 0.137. The inset shows the log–log plot of the
Edwards–Anderson order parameter versusTf − T with Tf = 0.137. The slope of this plot
yields a value of 0.26 for the exponentβ, in perfect agreement with the hyperscaling relation
β = νη/2. See the text and table 2 for details.

model on the honeycomb lattice and reported the nature of the transition as KT. Their
study on the honeycomb lattice was carried out together with a study of the triangular
lattice, and the conclusions regarding the nature of the transition, Ising versus KT, were
primarily based on the saturation of the specific heat with respect to system size. For the
honeycomb lattice a saturation in the specific heat was obtained, while the triangular lattice
did not show any saturation. Consequently, the transitions were classified as KT and Ising-
type for the fully frustratedXY model on honeycomb and triangular lattices, respectively.
Our work on the honeycomb lattice shows that the conclusion drawn by Shih and Stroud
[13] was premature, since the susceptibility for the honeycomb lattice shows no divergence
characteristic of a KT transition. Our results for the specific heat agree numerically with
the results of Shih and Stroud. In addition our results for the system energy at the lowest
temperature studied (0.02J ) agree with the ground-state energy reported by Shih and Stroud
[13]. In table 1 we present the average energy per spin for all of the lattices and cluster sizes
used in the simulation. We find that with periodic boundary conditions magnetic moments
or ferromagnetic correlations decrease with increasing system size at low temperatures,
yielding higher energy per spin for larger sizes. For the 256-site honeycomb lattice our
value of the average energy per site atT = 0.02J , −1.2169J , is lower than the ground-
state energy of−1.2071J reported by Shih and Stroud [13]. Presumably, Shih and Stroud
report the value obtained for their largest cluster of 576 sites. For a 1600-site cluster our
value of the energy at 0.02J , −1.198J , is slightly higher. In addition to specific heat and
energy, our results forqEA are in good agreement with the local order parameter values
reported by Shih and Stroud [13]. Note that the local order parameter studied by Shih and
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Figure 6. A scaling plot of the spin glass susceptibility for the octagonal lattice obtained using
the exponentsη = 0.3, ν = 2.6, andTf = 0.33. The slope of the log–log plot in the inset is
0.38, in agreement with the hyperscaling relationβ = νη/2. See the text and table 2 for details.

Stroud is the square root of the order parameterqEA studied in this work. On the basis
of these comparisons it appears that the study by Shih and Stroud was correct in terms of
the accuracy of the quantities reported, but incomplete as regards correctly identifying the
nature of the transition.

3.4. Spin glass susceptibility

In a ferromagnet, the approach to the ferromagnetic phase from temperatures above the Curie
temperatureTC is accompanied by a dramatic increase in the range of the spin correlations,
which then diverges atTC . A corresponding phenomenon occurs in spin glasses. However,
it is not the spin correlation function〈Si · Sj 〉, but rather its square that acquires a long
range. This leads to the divergence, at the spin glass transition temperatureTf , of the spin
glass susceptibility

χSG = 1

N

∑
ij

〈Si · Sj 〉2 (T > Tf ). (7)

χSG satisfies a finite-size scaling relation of the form [6]

χSG = L2−ηχ̄(L1/ν(T − Tf )) (8)

where χ̄ is the scaling function,L is the system length,ν is the exponent for the spin
glass correlation lengthξ for T > Tf , and η describes the power-law decay of the spin
glass correlation atTf . For the quasiperiodic lattices the linear dimensions in thex- and
y-directions,Lx andLy , are different. Thus the scaling relations could be studied using
either of these two as a measure of the linear dimension of the cluster. Alternatively, one
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Figure 7. A scaling plot of the spin glass susceptibility for the honeycomb lattice obtained
using the exponentsη = 0.12, ν = 3.25, andTf = 0.11. The slope of the log–log plot in the
inset is 0.207, in good agreement with the hyperscaling value 0.195. See the text and table 2
for details.

could useL = √N as a measure of the linear dimension of a cluster ofN sites. All three
options give similar results for all of the lattices that we have studied. In the following,
we will present results withLx = L in equation (7). To ensure a proper convergence of
χSG, calculated via equation (6), we have averaged over 5 blocks of 40 000–60 000 steps at
low temperatures(<0.2J ) and 5 blocks of 60 000–80 000 steps at higher temperatures. By
examining our results every 5000 steps, we find, for all lattices, little change inχSG over
the last 5000–10 000 steps. Thus, we estimate that these chain lengths produce at least a
95% convergence inχSG.

Table 2. The spin glass transition temperatureTf and the exponentsη andν obtained for the
various lattices from finite-size scaling analysis of the spin glass susceptibility. The exponentβ

is obtained from the log–log plot of the Edwards–Anderson order parameterqEA andT − Tf .
According to the hyperscaling relation the exponentβ should equalνη/2, which is shown in
column 4. The error estimates result from attempting to fit the scaling relation, equation (8),
together with the hyperscaling relationβ = ην/2 (see the discussion in the text). The error bars
for Tf are within 10%.

Lattice Tf η ν β νη/2

Penrose 0.137 0.20± 0.03 2.6± 0.4 0.263± 0.009 0.26
Octagonal 0.33 0.30± 0.02 2.6± 0.4 0.38± 0.01 0.39
Honeycomb 0.11 0.12± 0.02 3.25± 0.6 0.207± 0.009 0.195
Bathroom tile 0.11 0.12± 0.02 3.25± 0.6 0.214± 0.007 0.195
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Figure 8. A scaling plot of the spin glass susceptibility for the bathroom tile lattice obtained
using the exponentsη = 0.12, ν = 3.25, andTf = 0.11. The slope of the log–log plot in the
inset is 0.214, in good agreement with the hyperscaling value 0.195. See the text and table 2
for details.

In figures 5–8 we show the scaling behaviour ofχSG in terms ofLx . In table 2 we
provide our estimates of the critical exponentsν, η andβ and the critical temperaturesTf for
the various lattices. The best way to obtain the critical temperature is via the fourth-order
cumulant (Binder parameter) of the order parameter [33]. Bhatt and Young [6], in their study
of the±J Ising spin glasses, calculated the cumulant from the probability distribution of
the order parameterq. This method of obtaining the cumulant is inapplicable in the present
case, where the effective bond interactions are not random variables. The cumulant could
be obtained from a direct calculation of the multi-spin correlation functions for the various
lattices, with preassigned flux through the plaquettes. However, stringent requirements
of both computer memory and time render such calculations beyond our present available
resources. Thus we have combined the finite-size scaling equation (7) with the hyperscaling
relationβ = ην/2 to obtain reliable estimates ofTf and the exponents. We find that small
changes inTf in equation (7) can lead to significant changes in the exponentsη andν, if the
latter are allowed unrestricted variations. However, the constraintβ = ην/2 and equation
(7) can be simultaneously satisfied only ifTf is pinpointed accurately. In the insets of
figures 5–8 we show the log–log plots of the Edwards–Anderson order parameter versus
T − Tf . The exponentsβ, obtained from these log–log plots, are then required to satisfy
the hyperscaling relation forη andν obtained from equation (7). The error bars forη and
ν provided in table 2 are estimates resulting from good fits to equation (7), onceβ andTf
are known fairly well from the log(qEA) versus log(Tf − T ) plots. The error bars forTf
are less than 10%.

In figure 9 we show a fit to the finite-size scaling equation (7) for the Penrose lattice
with Tf set equal to zero. Note that this results in an unusually high value ofν and a very
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Figure 9. A scaling plot of the spin glass susceptibility for the Penrose lattice withTf = 0.
See the text for details.

small value ofη. The near-zero (0.01) value ofη implies that the correlation function0(r)
of the square of the quantity〈Si (0) · Sj (r)〉 becomes almost independent ofr at Tf :

0(r) ∼ 1

rd−2+η (9)

at T = Tf in dimensiond. This, in turn, means that the spins are either parallel or
antiparallel atTf , a highly unlikely scenario in view of the frustration varying from site to
site and giving rise to a large number of effective bond interactions (see figure 10). No
evidence of such spin alignments is found in snapshots taken from our simulation at the
lowest temperature (0.02). Note, in addition, that a zero freezing temperature would be
clearly inconsistent with our results for the Edwards–Anderson order parameter and linear
susceptibility. Since an equally good fit, consistent with all of our results and satisfying
equation (7) as well as the hyperscaling relationβ = ην/2, can be obtained forTf 6= 0,
we decide in favour of the latter scenario. The same comment applies to all other lattices
examined in this work.

We note that the exponents for the various lattices are very similar (those for the two
periodic lattices being identical). In principle, in the presence of lattice-structure- and site-
dependent nonrandom frustration, each lattice type can belong to a different universality
class. It is interesting to note, however, that the exponents obtained in this work for the
frustratedXY model are similar to those obtained by Bhatt and Young [6] in their study of
the±J Ising model in 2D (square lattice) (Tf = 0): η = 0.2± 0.05, ν = 2.6± 0.4. In
particular, for the Penrose lattice the agreement with the exponents for the±J Ising model
is remarkable. However, sinceTf is found to be zero for the latter case [6], the universality
class for the frustratedXY model on a Penrose lattice (Tf 6= 0) is deemed to be different,
according to the present work, from that of the±J Ising spin glass in 2D. The equality of
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Figure 10. The distribution of the effective nearest-neighbour coupling parameter cos(Aij ) for
the lattices used in this work.

the exponents in the two models is most probably fortuitous, but is certainly interesting and
worth exploring. For comparison, the exponents for the±J XY model in 2D (withTf = 0),
obtained by Jain and Young [7], are:η = 0.3± 0.3, ν = 1.08± 0.27. We emphasize that
the model that we have studied is, strictly speaking, neither a spin glass nor a vortex glass
model (as explained in section 2), and invokes a frustration that is dependent on the lattice
structure. Each lattice in this model can belong to a different universality class, which
should in turn be different from the universality classes corresponding to the spin glass and
vortex glass models in 2D. An interesting observation is that the exponents for the two
periodic lattices and the correspondingTf are almost identical, and the exponents for the
two quasiperiodic lattices are very close. The differences in the values of the exponents are
certainly larger between a quasiperiodic and a periodic lattice than between two periodic
or quasiperiodic lattices. Also, quasiperiodic lattices appear to have a higherTf than the
periodic ones. Because we have examined only two periodic and two quasiperiodic lattices,
the speculative nature of these statements cannot be overlooked.

4. Comparison with results on other lattices

As stated in the introduction, the frustratedXY model has been studied on a variety of 2D
lattices, the most widely studied being the square and the triangular ones. Although there is
some controversy regarding the nature of the transition on these lattices, including the issue
of the existence of more than one transition, most authors report the nature of the transition
on these two lattices as being ‘Ising-like’. It will be useful to identify some feature of the
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model on the lattices studied in the present work that distinguishes these from the square or
triangular lattice. The obvious quantity to look at is the distribution of the lattice-dependent
vector potentialsAij . Equivalently, we could rewrite equation (1) as

H =
∑
[ij ]

−J cos(Aij ) cos(θi − θj )+
∑
[ij ]

J sin(Aij ) sin(θi − θj ) (10)

where the first term is simply the standardXY Hamiltonian, with the lattice-dependent
frustration appearing via the variation in the effective nearest-neighbour exchange parameters
cos(Aij ). We thus look at the distribution of the effective coupling parameters, or simply
the quantity cos(Aij ) for various lattices.
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Figure 11. The distribution of the effective nearest-neighbour coupling parameter cos(Aij ) for
the fully frustrated triangular and square lattices, and for square lattice with an irrational flux,
f = (3−√5)/2, through the plaquettes.

In figure 10 we show this quantity for the lattices studied in this work and in figure
11 we show the same for the fully frustrated square and the triangular lattices. The square
and the triangular lattices, which show the Ising-like transition, have far fewer values of the
parameter cos(Aij ) than all of the other lattices exhibiting spin glass behaviour. It should be
noted that in order to compare the distribution of the quantity cos(Aij ) for various lattices,
we chose, in each case, the referencex- andy-axes along some symmetry direction of the
lattice. An arbitrary choice of the reference axes, without any regard to the symmetry of
the lattice, may result in a distribution showing spuriously large values of the parameter
cos(Aij ). Such values of cos(Aij ) give rise to frustration which can be simply gauged away
by rotating the reference frame used to describe the lattice sites, and cannot be responsible
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for spin glass behaviour [4, 34]. In figure 11 we also show the distribution of cos(Aij ) for
a square lattice with an irrational flux,f = (3−√5)/2, through the plaquettes. This model
was studied by Halsey [35], and was reported to show a low-temperature spin glass phase.
We note that the distribution of cos(Aij ) for this case is similar to the distribution for the
four cases studied by us, showing a large number of possible values.

From the above discussion it appears that frustratedXY models with a wide and more
or less uniform distribution of the effective coupling parameters (more appropriately with
a large number of values of the parameter cos(Aij ) distributed over the interval between
−1 and 1) belong to a different universality class to those with only a few possible values
of cos(Aij ). It is conceivable that for the square and the triangular lattices, with only two
to three possible values of the effective coupling constant, the low-temperature phase is a
spin-ordered state with a nonzero wave vector. This leads to a normal second-order phase
transition with the specific heat showing a lack of saturation with respect to the system size
and diverging at the transition temperature, as observed by Teitel and Jayaprakash [12] and
Shih and Stroud [13]. An increase in the number of possible values of the effective coupling
parameter leads to a scenario where the spin disorder persists at all temperatures. This is
the case for all of the lattices, periodic and quasiperiodic, studied in this work. Our detailed
numerical study shows that the low-temperature phase for these lattices differs from the
high-temperature phase in that the spins at low temperatures are frozen over macroscopic
timescales, while at high temperatures they are free. The numerical evidence that there
must be an order-of-magnitude change in timescales over which the spins rotate is strong.
That the lattice structure is a relevant variable for the frustratedXY model has been known
for a long time. Here we point out a feature dependent on both the lattice structure and the
magnetic field, namely the distribution of the parameter cos(Aij ), that might account for
the spin/gauge glass-like phase in the model.

We would like to remind the reader that the parameter cos(Aij ) in the above discussion
is nonrandom. The above discussion is strictly limited to the frustratedXY model, and
does not apply to conventional gauge/spin glass models with random interaction between
the spins.

5. Comments and conclusions

In summary, we have presented numerical evidence in support of the existence of a low-
temperature spin/gauge glass phase for the frustratedXY model on two quasiperiodic
(Penrose and octagonal) and two periodic (honeycomb and bathroom tile) lattices. Our
interpretation of the nature of the transition or the low-temperature phase is based on the
temperature dependence of the Edwards–Anderson order parameter, spin glass susceptibility,
linear susceptibility, and the specific heat, obtained via Monte Carlo simulation. While we
cannot absolutely rule out an alternative explanation of our results, the numerical evidence
in support of our interpretation is strong. The magnetization is found to be zero (as close
to zero as possible in any numerical simulation) at all temperatures for all of the lattices
studied. We have also carried out a detailed study of the unfrustrated ferromagneticXY

model on the Penrose lattice. The results are similar to those for a square lattice [28], with
a slightly higher KT transition temperature.

Of all of the lattices studied in this work, only the honeycomb lattice has been studied
previously in connection with the frustratedXY model, by Shih and Stroud [13]. Our results
for the order parameter, specific heat and energy all agree with those of Shih and Stroud
for similar system sizes. Our largest system size for the honeycomb lattice is 8192, much
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larger than the largest system size of 576 studied by Shih and Stroud. As pointed out in
section 3.3, on the basis of the saturation of the specific heat with the system size, Shih
and Stroud interpreted the transition as being of the KT type. Furthermore, from a study
of the helicity modulus they obtained aTc of 0.12. It is interesting to note that our study
of the linear and spin glass susceptibility, in addition to the quantities studied by Shih and
Stroud, reveals that the transition is of the spin/gauge glass type, occurring at nearly the
same temperature (0.11).

Our results for the quasiperiodic lattices are consistent with those of Halsey [35], who
finds a spin glass phase for the frustratedXY model on a square lattice with an irrational
flux through the plaquettes. Note that for the Penrose, octagonal, and bathroom tile lattices
we can fully frustrate only one of the two elementary plaquettes at any one time, the
corresponding flux through the other plaquette being irrational. However, with the example
of the honeycomb lattice we have shown that the irrationality of the flux through the
plaquettes is not a necessary condition for the existence of the spin/gauge glass phase. It
may, however, be a sufficient condition. The common feature of all of the cases studied is
that the lattice structure and the transverse magnetic field induce a large number of possible
values of the effective coupling parametersJ cos(Aij ).

The experimental implication of our study is that an array of Josephson junctions,
forming any of the lattice structures discussed in this work, in a suitably chosen transverse
magnetic field should behave as a superconducting glass at low temperatures. Advanced
microfabrication techniques [36] should be capable of generating such periodic/quasiperiodic
arrays of superconducting grains. Experimental work of this kind has been reported [37] on
2D fractal (Sierpinski gasket) networks. Halsey [35] has pointed out that for superconducting
arrays with low normal-state resistivities the glass transition should basically appear as a
mean-field transition, with fluctuation effects being barely observable. For arrays with high
normal-state resistivities the fluctuation effects will cause the glass transition to deviate
substantially from a mean-field transition, with noticeable system-dependent details. As
discussed by Ebner and Stroud [38], an important property of such glassy superconductors
is a large difference between their dc and ac susceptibilities.
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